
pipe radius; L, length of active region of condenser~ Rer, radial Reynolds number; X, axial 
coordinate; Y, radial coordinate; Y, dimensionless radial coordinate; B, geometric parameter; 
p, density; ~, kinematic viscosity; 4, current function; V, dimensionless radial velocity 
component; X, dimensionaless axial coordinate. 
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THEORY OF AN ABSOLUTE SUPERCONDUCTING BOLOMETRIC 

THERMAL-RADIATION RECEIVER 

S. B. Kiselev UDC 535.6:621.317.794 

Taking the transient zone into account, a theory is developed and the operation is 
analyzed fora superconducting nonisothermal bolometer in the regime of absolute 
thermal-radiation reception. 

The main problem in producing an absolute thermal-radiation receiver (ATRR) is assurance 
of the equivalence of the electrical substitution power and the radiant thermal flux power 
absorbed by the ATRR sensor. One of the promising areas in the solution of this problem is 
the production of an ATRR based on a superconducting nonisothermal bolometer (SNB), first 
proposed by Franzen [i]. However, the theory worked out in [i] is developed for the two- 
phase state of the SNB, i.e., without taking account of the transient zone from the normal 
to the superconducting state, for the case when the incident thermal flux is distributed 
uniformly over the whole surface of the ANB sensor. This makes direct utilization of the 
SNB of known structures [2-4] difficult for the production of an ATRR because of the different 
nature of the thermal energy absorption and liberation by the bolometer sensor. In bhis 
paper a three-phase (taking account of the transient zone)theory is developed for the SNB, 
and computations are performed for the case when the incident thermal flux is distributed 
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sy~etrically over a normal section of the SNB sensor, and appropriate corrections are also 
obta~ed for the co~utational formulas of the thermal substitution method. 

~e distribution of temperature T along the surface of an SNB sensor, whose length and 
breadth are much greater than the thic~ess, is described by a one-dimensional heat-conduc- 
tion equation with the following form in the general case: 

COT = - ~ x  Xo + - + 
Ot' ~ 2xo(As+Ao) As(As+Ao)'  

where x is the distance from the center of the bolometer. In the stationary case, when the 
heat flux W iw distributed symmetrically in the section (--xo ~ x ~ xo) over the sensor sur- 
face, by t~ing account of the transient zone whose boundaries (Xcl, xc2) correspond to the 
transition temperatures (Tcl, Tc2), we can dissociate (i) into four equations which can be 
rewritten as follows after reduction to dimensionless form: 

2 d 20 -t- ~ 1 - - { - 1 = 0 ;  O~y~yo(Tmax~T>/To) ,  (2) 
aN dy--'- T Yo 

a~ - -  d20 -t- 1 = O; yo~y~.~yc~(To~T~TeO, (3) 
dy ~ 

d[ 1 . dY (a~ + aO) ~ -+-70. -+-1=0;  ye~ ~ y ~ ye, (Tel ~ T ~ Te~), (4) 

a~ -- d20 = 0 ;  Y~2~Y~ 1 ( T ~ , ~ T ~  Tb). (5) 
dy ~ 

Here a.~=.%C~s(As+A~ is the dimensionless heat conduction, a current parameter; 
pL~i 2 

q = WAs/2pLi 2 is the dimensionless power absorbed by the bolometer. It is here assumed that 
the dimensionless effective heat conduction of the bolometer changes linearly Sn the tempera- 
ture with the proportionality factor = = ?(a~--a~) during the transition from the normal 

2 and 2 (with the subscript N) to the superconducting (subscript S) state, while a N a S are 

constants equal to the integrated mean in the temperature range under consideration. 

Integration of (2) and (3) is trivial and yields 

1 s " ~I (Yet---~Yo -4- ycl, O ~ y ~ y o ,  (6) a O=--Ty 1 + n  , 

1 
a~ 0 = ~'l (Ycl - -  Y) -~- -~- (Y~l - -  Y~), Yo ~ Y ~ Yel, (7). 

while we introduce the new variable dO/dy =P(O) for the integration of (4), whereupon (4) 
goes over into the Bernoulli equation whose solution is well known [5], and after simple 
algebraic manipulations we obtain 

d_._y_y = - - ( a ~ + a O )  ( n + y ~ O 2 - - a ~  ' ( ~ 0 + .  1) ~ -  1 _ eO 2 ? 0 - -  (8) 
dO ? 

For a repeated integration of (8) it is necessary to expand the right side in a power series 
in (sO), after which the integration can be performed analytically with any previously assigned 
accuracy by giving thequantity of series terms. We limit ourselves in the subsequent con- 
sideration to the linear term in the expansion, which corresponds to the condition 

~la~y ~ 1, ( 9 )  

and we then obtain from (8) 
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o ) oN, O+l, 
Y = Yea \ - - - ~  1 - -  a~v---~ arc sin [(~1 + Ycl) ~ ? + a,~,] 1/-~ 

2 N- O~ o / 
-----T----[(~I -~- ycl)2y + a~ --  a,v(yO -~ 1)211/2 ' a~v---~- [(~] -[- Yel)2y AV a~l'/'-'f' Y * ~ Y ~ Y , 2 .  

any (10) 

The equation obtained describes the temperature distribution in the transition zone in a 
linear approximation in ~. 

Integrating (5) with (8) taken into account yields 

2 ~1/2 
o aA~ [ 2 , Y ~ 2 ~ Y ~ I "  a~O---- ( l - - y )  (T~ + Vel)2+ T J  - - a s ,  (11) 

from which we obtain the following equation to determine the limits yc~ and yc2 of the transi- 
tion zone by setting y=ycl, O=0 in (I0) and Y=Yc~, O----I/y in (Ii): 

1 - T  ( +w0 ' (12) 

Y,~ - -  Y,I = - ' 7 -  a r c  sin ., (l~[ -~- y e l )  2 ,-~ a3 ,  - -  (T] @ Yel)  �9 (13)  
\ V / aN [(~+yel)~W+a~] if2 + ax,'f ? 

All the fundamental SNB characteristics can be obtained from (6), (7), and (i0)-(13); however, 
their solution in general form is possible only numerically on an electronic computer. 

A numerical analysis of the equations obtained showed that for each fixed value of y, %S 

and ~N there exists a critical parameter 2 = i 2 .2 (as)cr o/Xcr , meaning that there also exists a 

critical current icr below which (a~ > (a~)cr) a nonisothermal bolometer operation regime is 

not realized. Results of computations executed on the basis of (12~-(13) for n = 0 and 
different fixed values of the ratio %S/% N are represented in Fig. I, from which it is seen 
that the critical current drops abruptly as y < 5-10 diminishes, while the width of the 
transition zone, and therefore its influence on the SNB regime, increase abruptly; however, 
this influence already becomes insignificant for y ~ 20. 

Strictly speaking, (i0) and (15) are valid in the case when the effective heat conduction 
of the bolometer varies weakly during its transition from the normal to the superconducting 
state, i.e., when %S/%N ~0.8-0.9. 

For real bolometers deposited on glass [2] or mica [4] substrates, this inequality is al- 
ways satisfied since the effective heat-conduction coefficient of such bolometers is deter- 
mined mainly by the heat conduction of the substate for a relationshiPoAS/Ao ~ 10 -2 i0 -~ 
between the film and substrate areas. Thus, for a lead bolometer 500 A thick deposited on 
a 5-~m-thick mica substrate, the ratio is %S/%N ~ 0.9, while the heat conduction of the lead 
during the transition into the superconducting state diminishes fivefold. Moreover, as 
follows from the computations performed, even in the case of a strong change in the bolometer 
effective heat conduction in the transition zone (%S/%N = 0.5), the influence of ~ on the 
bolometer parameters is negligible (not more than 5% for icr, Ycl, and Yc2) and taking 
account of the next approximations in ~ cannot raise the accuracy of the computations sub- 
stantially, which permits utilization of (13) for a further quantitative analysis. The com- 
putations also showed, and this follows directly from (12)-(13), that the width of the transi- 
tion zone and the zone of the normal state, meaning also the sensitivity of the SNB, are 
practically independent of the nature of the incident radiant heat flux distribution over the 
length of a normal section of the bolometer, and depend only on its magnitude, which permits 
utilization of such a bolometer to produce an absolute thermal-radiation receiver with an 
independent band sensitivity. 

To analyze the influence of the transition zone on the fundamental SNB characteristics, 
we expand the arcsin z in the right side of (13) in a series and limit ourselves to the first 
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I. Dependence of the critical current and transition 

zone boundaries on the transition torsion parameter y for 

i = icr. Solid curves are for XS/X N = 1 and the dashes for 
%S/X N = 0.5; ~ = O. 

Fig. 2. Dependence of the dimensionless bolometer sensitivity 

in the constant current regime icrr i for ~ = 0 on the transi- 

tion torsion parameter y. Solid curves are for XS/X N = I, 
dashes for XS/X N = 0.5; and I, 2, 3) icr/i = 0.93, 0.95, 0.97. 

term. Then upon compliance with the condition 

a~l? ~ 1, (14) 

i.e., when the difference between the bolometer critical temperatures AT e = (Tcl -- Tc2) is 
much less than the temperature of:bolometer supercooling AT = Tc~ -- Tb, which can always be 
reached by reducing the temperature of the bolometer base, the solution of (12)-(13) can be 
written in the form 

. Y * ~ - - Y * l =  2 ?(q-[ gel)' (15) 

I I I / I '  2oi, g,~----~ ( l - -N)  zh +TI)~--4as--  ,~2 } (16) 

where the minus sign in front of the radical corresponds to the unstable state of the bolo- 
meter in the nonisothermal regime. 

It follows from (16) that a critical current exists for n = 0 determined from the 
condition 

D~(icr)= l - - 4 a g - - - - 2 ~  = 0  ?2 (17) 

or in dimensional form 

~ N - - ~ S  ) 4XsAs(As+Ao)(Tcl-- Tb) (18) 
i c r  = ]///  1 +  27-'-~s " PL ~ ' 

for values below which a stable SNB state is impossible; the minimal half-length of the normal 
section cannot here be less than the critical value Xcr = L/2. 

To determine the SNB sensitivity, the total bolometer resistance must be calculated with 
the transition zone taken into account, whereupon we write it in the dimensionless form 

2 i%e+ ltdy, (19) 
Ycl 

from which we finally obtain 
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2 1 a~N + as 

(20)  

by using (i0)and (15) and taking account of (14). To obtain the SNB sensitivity in the 
constant current regime 

:  oTb] 
, t, O~i )~  

(21)  

we expand the right side of (16) in a power series in n and limits ourselves to the linear 
term in the expansion; then for 

we have for r i 

<+)2 
~I << ] -- (22) 

i = - -~"  (1 ier/iz)l/2 - -  1 (23)  . - -  ? (1 --i2cr/i~) 1'~ 

from (16), (18), and (20). It is seen from the expression obtained than an increase in the 
transition zone (diminution in y, see Fig. i) in the case of large y will result in a diminu- 
tion in the real SNB sensitivity during its operation in the constant current regime. 

Computations performed by means of (23) are represented in Fig. 2, from which it is seen 
.2 .2 

that as i tends to icr (icr/l + i) the sensitivity grows abruptly while the influence of the 
transition zone as y increases becomes negligible and for y > 20 and i ~ 1.05icr , which 
corresponds to the real regime of SNB operation, can be neglected. 

It should here be kept in mind that, strictly speaking, the analysis performed is valid 
only upon compliance with condition (14), i.e., for y > 5-10. For a significant diminution 
in y (y < 5) an abrupt diminution occurs in the critical current and a reduction in the nor- 
mal state zone (see Fig. i); the bolometer practically goes over into the isothermal regime, 
in which connection a certain increase in the SNB sensitivity is possible in this domain of 
y, where it tends in the limit y = 0 (Tb = Tc:) to the sensitivity of the corresponding iso- 
thermal bolometer. 

From the viewpoint of SNB utilization to produce an absolute thermal-radiation receiver, 
the analysis of SNB operation in the constant resistance regime, i.e., the realization 6f the 
thermal substitution method, is of great interest. In this case, the joint solution of (16) 
and (20) under the condition 

Yb Qt, i) ------ r b  (0, ier) (24) 

is necessary for the determination of the absorbed power W. For an exact determination of 
n and, therefore, of the power absorbed by the bolometer, (24) must be solved, but this can 
be done exactly only numerically for arbitrary y. However, if condition (24) is considered 
as a function ~(y) given implicitly, then by representing it as a power series in a~/y and 
limiting ourselves to the linear term in conformity with condition (14), we obtain 

-2 \ 2 2 2 
1 ( t c r -  1) + a N - - a s  4 a s - - 1  (25)  

= "-2 \ i z ? 3 - -  4a~ ' 

from which we obtain in dimensional form by taking account of (16), (19), and (20) 

2 O o 

= Rb(t~ -- i 2) As ? 3 --4a~ ' (26) 

where the first term corresponds to the definition of the power absorbed by the bolometer 
in conformity with the substitution method, while the second describes the correction to the 
substitution method that is associated with the presence of a transition zone. An analysis 
of (26) shows that, as in the case of SNB operation in the constant current regime, the 
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influence of the transition zone on SNB operation in the ATRR regime can be neglected for 
i ~ icr and y > 20; here the bolometer sensitivity under the condition ~ = 0 is determined 
by the expression 

R 2ir 2? 3 - -  4a~ (27) 

and grows abruptly with the diminution in the critical current. As follows from (18), the 
diminution of icr , meaning the increase in r R also, for a given geometry L can be achieved 
both by an increase in the specific resistivity o/As, i.e., by the deposition of 
thinner films, and also by the diminution of the temperature difference AT = Tc~ -- Tb, i.e., 
by raising the bolometer operating temperature and therefore diminishing y. However, it 
should here be kept in mind that a significant diminution in y already results in a diminu- 
tion in the bolometer sensitivity because of the magnification of the influence of the 
transition zone. Moreover, for y < 20 the corrections related to the influence of the tran- 
sition zone must also be taken into account in (26) for an exact realization of the substi- 
tion method. For y less than 5-10, these corrections become so significant in connection 
with the abrupt reduction of the normal state zone that the substitution method is not 
realized in practice, and utilization of the SNB as an ATRR can result in large errors. 

In practice this means that preference should be given to superconductors of the first 
kind (In, Sn, Pb, and their alloys) for the production of ATRR on the basis of SNB, since the 
difference in the critical temperatures ATc~ 0.01~ and the bolometer supercooling by just 
0.1~ will permit obtaining high sensitivity (r R = i02-i0 ~ V/W) for y ~ i0. At the same time 
utilization of superconductors of the second kind (Nb and its alloys) for this purpose, 
wherein AT c can reach I-2~ requires bolometer supercooling of 10~ and more, which will re- 
sult in a diminution in the sensitivity because of the increase in icr; here y ~ I0, which 
reduces the measurement accuracy. 

It is therefore seen that the transition torsion parameter in the temperature can affect 
the SNB operating regime in a substantial manner. For a reasonable selection of this parameter, 
the production of an absolute thermal-radiation receiver on the basis of a SNB is possible 
with a sufficiently high sensitivity, independently of the nature of the incident thermal flux 

distribution. 

NOTATION 

%e, effective heat-conduction coefficient of the bolometer; p, specific resistivity; As, 
film cross-sectional area; Ao, substrate cross-sectional area; y = x/L, dimensionless dis- 
tance from the center of the bolometer; L, distance between the center and the base of the 
bolometer; Tc~, upper critical transition temperature bound; To2, lower critical transition 
temperatur e bound; Tb, temperature of the bolometer base; y = (Tc~--Tb)/(Tcz--Tc2), transition 
torsion parameter in the temperature~ @ = ~T--Tcl)/(Tc~--Tb), dimensionless temperature; W, 
power absorbed by the bolometer; Rb, total bolometer resistance; r, sensitivity; icr, critical 

current. 
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